Sunday, September 9, 2018

The Convergence of Quality in Genetics


Consider an animal. It has genes which came from the gene pool for its species. If gene selection was random, looking at animals of that species you would see some which are superior in appearance, others superior in physical ability or agility, others superior in perception or mental abilities, others superior in strength, and so on. The best genes for one attribute set would be in some subset of animals of this species; the best genes for another attribute set would in another subset, and so on. The number of those who are superior in both attribute set one and attribute set two would be small, just the product of the fraction of these two qualities compared to the whole set of animals in that species. The number of those who are superior in three attributes would be multiplicatively smaller still. 

That’s not the way it goes. There is a correlation between having superior genes for one attribute set and for another, so the numbers are higher that just the product of the fraction in each attribute set alone. Just to give a numerical example, suppose the animals who are the fastest runners, moving individually, are 10%, and the animals who have the sharpest perception skills are likewise 10%. The numbers of course depend on the thresholds set for superiority. If everything were random, there would be 1% who are both the fastest runners and the most perceptive. But there are more of them, maybe 2% or 5%. Why does this happen?

Consider three types of animals. One, a species where individuals are loners. Two, a species that lives in herds and are prey for other species. Three, a species that hunts in groups.

In the first species, during mate selection, males of the species compete for desirable females. The competition in both males and females will go preferentially to those who are superior in one or more attributes. Who gets the superior spouses? The superior animals of the other gender, as they win the competition more frequently. Thus we have mating of superior animals, with superiority in different attribute sets, together, and some of the offspring will be superior in both parents’ categories. These offspring will survive to the age of mating with higher probability, and the correlation starts to increase. Over many generations, it will increase to a level controlled by the natural randomness of life and surely multiple other factors. But this is a possible mechanism by which the correlation can happen.

This mechanism works with all species, not just loners. Whenever there is a bi-gender competition for mates, the correlation will creep in.

The same correlation will occur in the gene pool if there is a correlation between two attribute sets in necessary activities. For example, if it is easier for some animal in a particular species to gather food if they are both better at reaching it, from length of limbs or something else, and also better at spotting it, from more acute perception, in a synergistic way, then this correlation will eventually translate over into a correlation in the gene pool. This does not only relate to food gathering, but also hunting, if the species does that, in avoiding predators, if it is subject to this problem, in surviving temperature extremes, or in finding the way back to its den, or other activities which contribute to the survivability and eventually reproduction rate of an individual animal.

For herd animals, where there are some special competitive actions, such as rights to the best food or to be protected by the largest animals of the herd, or to be nurtured by non-parental animals as a young animal, or to be the leader in any stampede, or anything else which might promote reproduction rate, then the same synergistic correlation in activities will translate into a correlation in genetic superiority in more than one attribute set. The competition between herd animals for these positions of priority is based on multiple attributes, and synergism is quite reasonable to expect. 

For predator groups, animals which live in groups and where the adults mostly hunt together, there is much the same group leader or top animal hierarchy effects which occur here. The attributes would be quite different, such as jaw strength, ability to intimidate, ability to inspire others to follow, ferociousness, and others, but those gene sets which lead to each of these might serve to add to the probability an individual will reach top status in the group.

In an alien species which is becoming intelligent, there is no reason to think that these two effects: mate selection and synergism in necessary activities, would be any less of an influence in producing individuals who excel in more than one attribute set, perhaps leading to an accumulation of superior genes in a small fraction of the population. Healthiness is an attribute set that has not been mentioned before, but it plays a large role in reproduction rate. So also might food tolerance, or the ability to digest multiple sources of nutrition. Many others certainly exist.

The downstream impact of this, as the alien species begins to live in fixed locations and develop a civilization, is that there would be a tendency for some class distinctions to arise, probably hereditary as well. The pathway exists in any alien civilization which has the wherewithal to develop tool use and start its way up the ladder of technology to a situation where there are large differences among individuals in many attributes, but in a correlated way. Thus, some nobility or upper caste or something similar is likely to exist during a phase of the species’ technology development.

This translates into a problem. Individuals who are superior in many ways, and are so since birth, and because of it have enjoyed more fruits of the civilization than others, would be loath to relinquish their position at the top. Thus, this group of powerful individuals might seek to block the spread of genetic wealth down to the remainder of the society. Is it possible that they could seek to freeze society in the state they find it in?

This would be a worry for any prediction that a civilization eventually reaches asymptotic technology, except for the fact that civilizations are not stable at intermediate levels. Stasis eventually leads to decline and then a turn-around and another climb, each time higher. Eventually the civilization should pass through the genetic grand transformation, and after that, can easily stabilize, and then proceed on to star travel, if such things are possible and within their grasp, relative to the resources of their solar system.

No comments:

Post a Comment