Showing posts with label theory of the origin of life. Show all posts
Showing posts with label theory of the origin of life. Show all posts

Sunday, July 28, 2024

Mankind Rescues the Earth!

One of the biggest events in Earth's four billion year history is the oxygenation of its atmosphere. Around two and a half billion years ago, it is believed that some newly evolved organisms, cyanobacteria, developed a kind of photosynthesis, which produced free oxygen and used up carbon dioxide. At the beginning of this process, the atmosphere was mostly nitrogen with the rest largely carbon dioxide. At the end of the process, lasting perhaps hundreds of millions of years, the atmosphere was still mostly nitrogen, but oxygen had replaced almost all the carbon dioxide.

This process involved a huge number of geochemical and biological changes, but the bottom line is that Earth developed a very unusual atmophere, with free oxygen. The oxygen provided much more energy for organisms to use, expecially on land, and this led to the evolution of man. Hurrah!

Once there were large organisms on the surface of Earth, they went through their life processes, and in a few places, were buried along with the carbon they were composed of. One of these processes involved the burial, maybe under blown dust or dirt, in large number of layers, of carbon residues, which were carried by tectonic processes deeper underground, where the pressure would transform them into coal, oil and natural gas. Another of these processes happened in the frozen taiga, where the surface melts in the summer and plants form, only to die in the winter except for their seeds. All the rest were buried under layers and more layers of frozen ground and ice. There may have also been underwater processes, resulting in buried carbon compounds in the sea floor. There may be even more processes which extract carbon from organisms. All the buried carbon comes from organisms which extracted it from the residual carbon dioxide in the atmosphere, leading to a continued dropping of the concentration of this molecule. Since carbon dioxide is the most essential foodstuff for organisms, this extraction means that it is growing harder and harder for life to exist on Earth.

Those organisms which required more carbon dioxide in the atmosphere than we have now have already become extinct. Over periods measuring in millions of years, the lowering of carbon dioxide concentrations in the atmosphere would result in more and more extinctions, until Earth would be left with only the best carbon dioxide scavengers, living on a planet with little atmospheric carbon dioxide. Someday, if this plan were to continue, they would, one by one, die out as well. Thus the Earth may have been on its way to becoming a bare, lifeless planet.

Enter man. For most of its existence, man had no effect on this process, and indeed no knowledge of it. Fortunately for the rest of life on Earth, a couple of hundred years ago, mankind discovered the bountiful energy that was buried in what we usually call fossil fuels, coal, oil and natural gas, and began burning it. A large amount has been found and burned, and the Earth's horrendous shortage of carbon dioxide in its atmosphere is being reversed. It looks like this will continue, and the change in temperature caused by this, utilizing the greenhouse effect, may melt some of the frozen carbon storage in the northern part of the globe, leading to an even greater rescue of Earth's life. It is not beyond imagination that mankind will someday release some of the carbon buried in the sea floor.

We should not take credit for too much. There are other places the carbon can be hidden on the Earth, and eventually, these will take over and get rid of whatever is left over from the oxidation of the atmosphere plus whatever mankind has found and brought back for life to use. Hopefully, that will be long from now, when the sun is heating up and the Earth is becoming uninhabitable because of its solar-generated temperature. If mankind is successful in the short term in raising the average temperature of the planet a few degrees, life may evolve to endure higher temperatures, but this will only extend the span of life's duration on Earth by some millions of years. It is inevitable that Earth will become lifeless one day, but thanks to mankind and fossil fuels, that day may be in the far, far future, rather than at some sooner time.

Please excuse this tangential note. If you would like to read what I am projecting for the next seven hundred and fifty years of human life, the period of the most exciting changes in all of mankind's history, you can read my book, Looking Back From Luna.

Thursday, August 20, 2020

Detecting Alien Civilizations

Aliens haven't visited us as far as we can tell. They also haven't sent us messages that we could recognize. So, we have to peer out into space and look for them. Finding a planet which has oxygen in its atmosphere is regarded as a signature of life, as oxygen likes to bind to the exposed surface material and wouldn't exist in the atmosphere if it is not being replenished by life processes. At least that's how Earth works, and other planets may use this design as well. But oxygen or not, this says nothing about detecting aliens themselves. If they have an advanced civilization, they may be beaming messages in space, but we haven't been invited to join the network, and don't have a clue as to how to fill out the application. So we need to look for them, and then perhaps we might send a signal that says we want to chat. At least we would know where to send the signal. Detecting alien civilizations on a planet is difficult because they likely would not create any signatures on the planet which would be visible at lightyears distances, unless we built some very large telescopes. Even then, seeing some city on the planet's surface is unlikely. Perhaps if they traveled in space they might be detected. Consider the background of the signatures we could look for. If there was a planet like Earth, with life and even worse, weather and geological features and water features and more, all these would make the detection of life with low-resolution telescopes difficult. By low resolution, we do not mean little things like Palomar, but instead telescopes which have only ten to a hundred pixels resolution across the diameter of the exo-planet. That means, we would be seeing, at the best, only things which could stand out at those resolutions. What might they be? Suppose there was a very large city somewhere on the planet. This might be a few kilometers across, compared to the size of the planet, which might be several thousand. This is not going to be visible unless there is some spectral assistance. For example, if one pole of the planet was very cold, at the time we observed it, and the city was warm, we might see one pixel bright in the far infrared, surrounded by black (in infrared) pixels. This would be a good option, except infrared is absorbed by any atmosphere we might expect on a Earth-like planet. Maybe they have a thin atmosphere, very warm cities, and very cold polar areas, and then we might see the city. There is a much better chance to see some warm city on a satellite without atmosphere. If they had, on one of their planets, a moon with no atmosphere, but plenty of minerals and other things that were useful for the aliens, and they built some surface habitation there, it would be easier to see. The habitation would certainly be smaller, but the moon might be, for at least part of its orbit, much colder and not only that, more uniform in temperature. Thus, the detetability of a far infrared signal might be easier, even if the habitation was smaller than a city on the origin planet. So, an alien civilization with interplanetary capability might be easier to detect. There does not even need to be the assumption that the origin planet is in the same solar system. No matter how they get to the cold, cold satellite, the detectability calculation is the same. If, for example, their origin planet was on one star of a binary system, and the satellite they were visiting and colonizing was on the other, they would be detectable. And it certainly does not have to be a satellite. Any small world with no or a thin atmosphere would be just as good for detection. It might be that the future of alien space travel from this particular planet was very practical. Since there might not be any planet similar to their home planet within many light years, they might have decided they were going to go to many of the solar systems near them, within say ten light years, and set up colonies wherever they could be self-supporting. This could mean some good fraction of the solar systems around them will have some colony there. Perhaps a good fraction of these colonies would be detectable. How many colonies might there be? Suppose the universe is generous, and it is possible to set up a self-sustaining colony on a wide variety of smaller planets. Because we don't have any good knowledge of this number, none at all actually, because no one seems to have worked on it, let's assume it is 10%. So, if the average density of solar systems around their origin planet is about one in every 10 light year cube, the average alien civilization should have a colonizable solar system within about 9 or 10 light years. If their ship travels at 1% of the speed of light, it should take them about 1000 years of travel, plus some preparation time, to move to their first colony. If the universe is even more generous, and a self-sustaining colony can build their own starship in a thousand years from the foundation, they can start their second round of travel at 2000 years and arrive at the next planet at 3000 years. If they do two at a time, this means by 3000 years they have seven planets. In 2N-1 thousand years, they have 2 to the Nth – 1 planets. This works out to a million planets in about forty thousand years and a billion in less than sixty. These numbers are not realistic, but just are shown here to explain that covering the galaxy with alien colonies doesn't take that long. They could go much, much slower if they chose, and use up fifty million years colonizing the galaxy. Or whatever. If we want to go looking for alien civilizations, so that we can contact them or sell them our planet or just wish them well, it seems there is a fundamental division in how we choose to do it. The deciding question is: Is star travel possible, for an advanced alien civilization with a solar system full of resources and plenty of time to do anything necessary? If the answer is yes, it seems rather foolish to concentrate on looking for their home world. We want to know where could they have a self-sustaining colony, because there could be a billion of those and only one home world. Bad, bad odds. If the answer is no, then we might first ask: why are we doing this? Every civilization is all isolated in their home solar system, and what possible use could it be to find some other set of prisoners? Commiseration? But if someone could come up with a non-nonsensical, seriously rational and utilitarian, answer, for looking for somebody else's home world, we need to do some fundamental research which seems to be virtually ignored. If you want to find the home world of some aliens, you need to figure out what characteristics of the planet and its star are necessary, and what other conditions there are, such as having a satellite, low eccentricity, large gas giants in the same solar system, axial tilt and so on. A simple temperature of water condition is foolishly simple. We need to find the conditions both for life to originate and then, completely separately, for an intelligent civilization to evolve. That's what this blog is all about, but much more could and should be done.

Monday, June 15, 2020

Futurology and Alienology

Futurology is a name coined back a half-century ago, meaning the science of predicting the future. It may be obsolete now, but the idea of predicting the future has been around since man first figured out the difference between the past and the future, during the beginning of intelligence. It was always a way to get personal benefits. If you could talk to the gods and get the future from them, you could command a good position in your clan. If you were an erudite historian in the Middle Ages, you could talk about all the historical precedents for the present time, and what history says will happen again. In the fifties, it was chic to use statistics and various listing techniques to develop some semblance of a science. It was also common to assume that the average impression of lots of people was better than the insights of any one of them, and so survey techniques became common, with questions all about what the future might have. None of this made any sense, but it did make some good salaries. Back then computers were somewhat novel, and the idea of modeling and then simulation of something became an obvious outgrowth of them. There was little concept of the individualistic nature of a model, and it was thought that there was something intrinsic to some part of nature or society that would appear in models. Even now it is not at all understood that a good modeler can make almost any output come out of his model of whatever it is you wanted modeled.

Alienology is a name used in this blog for the attempt to use other types of scientific methods to analyze what parts of the development of an intelligent alien species were mandatory and which ones were stochastic. It may have been used elsewhere for other purposes, maybe cataloging movie aliens or designing creatures or documenting what some impressionable individuals have reported about their purported contacts with aliens, or whatever. One of the motivations of alienology, as presented in this blog, is to answer the question of why aliens haven't visited us. This question has been around since someone first conceived of the idea that the stars in the sky might signify other worlds like our, complete with people of some sort or another. Buddha included this concept in his teachings, back two and a half millennia ago, so the question is a very, very old one. Buddha's writings were recorded because he was revered as a great teacher, but all those other people from two or three or more millennia ago who said the same thing did not have their comments remembered. The question is more than old enough to have been answered already, but like many other subjects, there wasn't enough science back then, up to a century ago or so, to provide any reasonable way to credibly answer it. Now there may be.

The techniques used for alienology have been described in several other posts, except for one. That is morphology, which was invented by Swiss-Czech/Bulgarian scientist Fritz Zwicky, who also is responsible for many things known by children everywhere today, such as supernovas and jet engines. He used his technique of morphology for these inventions, and wrote a book about it. Morphology is simply the idea of listing all the possibilities for any option, in a scientific concept or engineering invention, and investigating them one by one until the one that is best emerges. It is methodological investigation, and of course has some difficulties, such as how to you define the criteria or attributes of the object you are going to list possibilities for. This involves a way to categorize objects, or rather, everything, on multiple levels.

This becomes an almost intuitive tool for those embracing it, and alienology does this, by questioning assumptions and asking what other alternatives might there be, and then investigating them equally, with an open mind. It is the opposite of learning the best answers for questions, and then building on them, and instead is more of a tearing down of best answers than building on them; then these best answers might occasionally get replaced with something different. The novel theory of the origin of life introduced in this blog is the result of this process, and the concept of swarms of black holes is another. There are indubitably many others buried in the blog. Morphology is one of the principle tools of alienology, along with technological determinism, the concept of asymptotic technology, and others.

This is all well and good, but what about futurology? Predicting the future of mankind would be a great blessing, but it is largely impossible, as there are so many stochastic events which affect the detailed course of future history. However, alienology states that the broadest flows of any alien civilization, of which Earth is an example to any other alien species, have a discernable outline. Thus, what happens next year or next decade cannot be aided by any derivation within alienology, but perhaps what happens next century or next millennia might be, or following morphology, there might be a list of possibilities which are exhaustive.

Mankind up to now has had very little interest in the far future, so the importance of anything alienology can say to futurology might be very tiny. You can't invest for stocks based on what happens three hundred years from now. You can't prepare for social change if you can only figure out what the social system might be a thousand years from now. So, as a practical matter, alienology is useless. There is no magic key that will help futurology become more relevant and less foolish.

Are there any benefits at all for life on Earth from alienology, except to answer the question of where aliens are and why haven't they showed up here yet? There are, but they are subtle. If they help a few of mankind's deeper thinkers spend some time on questions of the far future, instead of only the near future, then perhaps some improvement in the direction humanity takes toward that future might be obtained. Mankind seems to care not a whit about their decendents a thousand years from now, and perhaps that might be changed so that some planning is done with them in mind.