Showing posts with label technology stages. Show all posts
Showing posts with label technology stages. Show all posts

Thursday, September 9, 2021

Small, Old Civilizations

Since there are no signatures, at least bold, obvious ones, that there was a large, ancient civilization before our era, the possibility of a small, ancient civilization needs to be examined. When we say small, we mean one which stays below some fixed population count. The population limit is small compared to modern populations, or even ones of a century or two ago. The number might be tens of thousands or hundreds of thousands of people.

Why would a civilization keep its numbers down, especially in early eras when the concept of resource exhaustion would not have been known? What motivations could there be for limiting a population? Civilizations, especially early ones, are led by some individual, or in rare cases a small group. So the question really is, why would a leader take actions to limit the population of the people he governed? The usual case, in our history, is that leaders never do such things. Perhaps they might be forced to.

Suppose a tribe lived in a river valley, and a chieftain long before had established a belief system which included the rule that anyone emigrating from the river valley was insulting the chief and betraying his tribe. It would be easy to have this incorporated into the theology that was around at the time, as theology has the knack of adapting to rulers' desires, although not in an obvious manner. So, if this one chieftain had felt insulted and started this tradition, the population outside of the river valley would stay at zero. Perhaps the tradition includes any secretive emigrants being hunted down. With this rule in place, there is no possibility other than a limit to total population.

A river valley such as the one in this example would have a certain amount of water flow, from the river and from rain, and that might be the limiting factor in how much food could be grown. Some years might be better than others, but when a bad year came, or a stretch of drought years, the limit would be unstretchable. After some decades or even centuries, it would be known just how many people could live without threat of starvation during the bad periods, and some sort of reproductive control might be needed to accomplish this. Shaman medicine might come into play here, if an herb was found which caused temporary infertility, without much else in side effects. The civilization would have to have some rules for who is allowed to have how many children, but they could be any type of rules at all, as long as the maximum was not exceeded.

Thus, it is not difficult at all to envision a civilization which had a limited population over a long period. It just needs a geographic limitation enshrined in the tradition and the religion, and a means of controlling reproduction, such as a herb or other plant product. There might be other means as well.

The implications of such a civilization are substantial. If the civilization lasted for many millennia, scientific knowledge and technology would be developed. It might take ten or a hundred times as long as if the entire world were full of people developing scientific concepts or engineering solutions to problems, but there does not seem to be a critical mass of people below which science cannot develop. Perhaps there is one, but it might be ten thousand people, and the civilization could be imagined to be larger than this. So, slowly, slowly, technology grows inside this ancient civilization. But because of the limit in population, it would not grow in a wide a domain as it could were the population a hundred times larger. Certain things would be developed, and that field might be explored, and then some time later, a different advance might be made. So, while technology was developing in the small civilization it would not be uniform.

Technology does not develop in a chaotic form, as there are certain advances which have to be made in order to enable the research needed to develop other advances. In our world, genetics had to wait because the technology of DNA analysis was needed first, and it needed computation and some materials developments. In a limited civilization, these pathways would be much more severe. If the civilization lasted only five thousand years, perhaps only some basic chemistry and physics would be accomplished, together with some engineering capability. It is quite likely that working with natural materials like rock of different types would be one that would be developed earlier in the civilization's history. Thus, finding some evidence of precision rock machining is more likely than, for example, asphalt reside from airport landing strips. Carefully thinking out what could be developed in stages might lead to some more clues as to what signatures there could be from small, ancient civilizations.

The challenge of finding such signatures is daunting. Even if someone could come up with a proposed list of them, there is the difficulty of knowing where the civilization lived. In our example, there is only one spot on planet Earth where the signatures would be found. Even if there were two or three, it is still a formidable problem to find them. One could try and figure out where the civilization would choose to be, but that makes the assumption that they searched around over some wide area and picked the best spot and settled there. Starting the settlement seems more likely to be a matter of chance. It might depend on where some proto-humans were when some critical mutation increased their intelligence or when they figured out how to grow a crop on a river delta where they could stay, without continuous migrations using slash-and-burn agriculture. Any number of unguessable things could lead to the foundation of the home valley of the civilization. Thus, it might be necessary to search all river valleys for their location.

It might not have been a river valley where they decided to stay, although that seems a likely choice. A lakeside location is possible. If agriculture was not as dominant as we might guess, a prolific forest area might be a choice. Again, some careful thought is needed to first construct a list of the types of areas that might be chosen, and then to narrow down the possibilities for each. An even greater problem is that this civilization is supposed to have existed tens of thousands of years ago, when the surface of the Earth was a bit different than it is today. So some geology would need to be done as well. This is indeed a difficult problem.

Thursday, March 26, 2020

Peak Technology and Asymptotic Technology

To avoid confusion about the definition of these terms, both of which are important in alienology, it might be useful to clarify them here. Peak technology is what happens when an alien civilization runs into a problem, and is unable to sustain the growth of its scientific knowledge. Problems might be some catastrophe that causes shortages, like the alien civilization's bad luck to be on a planet with minimal resources, and try as they might to use them sparingly, they run out before they get to a complete knowledge of technology, a point which is called asymptotic technology, and their civilization begins a downturn. Science begins to be forgotten, or becomes unusable. There might be knowledge preserved in some sort of records, but there are too few people around who can learn it, so, as far as the whole society goes, it is forgotten. To use an extreme example, a planet with only agricultural villagers remaining after a golden age is one where peak technology has come and gone, no matter what type of recordings of past scientific knowledge there is locked away in some vault in a cave. 

Problems can arise from external sources, such as the famous example of an asteroid impact which is large enough to cripple the civilization and prevent it from recovering; the population is reduced below the critical mass needed to maintain technology, let alone progress in it. Problems can arise from internal sources, such as if biological terrorism leads to the extinction of a large fraction of the population. There are a host of other examples in each of these categories. An encounter with a passing star, enough to alter the orbit of the alien planet is one; the star does not have to get so close as to throw the planet out of its solar system, just close enough to make the orbit more eccentric, so that the whole land mass is covered with ice during aphelion, and it doesn't melt during perihelion. A supernova sufficiently close could do it. Basalt flooding could do it. Incessant war could do it. The desire of a ruling elite to maintain itself, coupled with a fear of social change due to more technology could do it. Even persistent, extreme affluence might do it. 

When a civilization suffers a problem such as this, not all technology is forgotten. Depending on how severe the collapse is, there might only be agricultural expertise left. Or transportation equipment at some level might be maintained, depending only on whatever original resouces are left plus renewable ones. The general idea is conceptualized as this graph:


There is no need for the curve to be smooth; it could just as well be bumpy at any section of it. The duration of time that the civilization spends near peak technology is a function of its population, the planet's natural resources, and many other factors. The slopes of the two sides might be of the same order, or they might be different: for example, the rise might be quite steep, as technology's rate of change feeds on itself, but the loss of technology can be slowed by the struggle to maintain it as long as possible.

If nothing goes wrong, technology just keeps accumulating until there isn't any more that isn't known. This is a very finite process. Sometimes someone makes a comment that implies that technology keeps accelerating forever, but this has no meaning whatsoever. Knowledge of details, such as how much sand is on some beach on some exo-planet, might be accumulated, but data is not science or technology. Science is a matter of understanding how the universe operates, and there is certainly some data involved in it, but it is largely a matter of theories explaining phenomena, patterns that exist, cause and effect relationships, and other things; in general it is the compaction of the ability to explain things that happen or that exist. The compaction starts with generalization which often grows into quantitative expressions describing almost anything. 

Asymptotic technology speeds up as early theories are found and validated, which allow more general questions to be asked. At some point, all the easy concepts are found, and the remaining ones grow harder and harder to develop. Thus, the curve of technology looks like an exponential during its earliest phases, and then tips over and continues to slow in its rate of progress, towards an asymptote of total understanding. This is a description of the general form of the technology-time curve, which looks like this:



The height of the asymptote is always the same, for every alien civilization. It is complete knowledge of science and technology. This simple fact is critically important for the study of alien civilization, in absentia. The coupling is done by the principle called technological determinism, which says that technology dictates the forms that a civilization can take, and since the asymptotic technology for every civilization is the same, the form of all the different alien civilizations in the galaxy will have very much in common. If we can understand how technology will progress, we will have an important tool for the study of all alien civilizations. 

One aspect of technology that assists in the understanding of its eventual progression is that technology builds upon itself. Different areas of technology do not progress at the same rate, but instead, one area will go slowly until another area has passed some threshold where the second area can facilitate progress in the first. Thus, technology evolves in stages, which means that the forms of societies will also go through stages. The most all-encompassing of these stages might be called grand transformations, and these appear to involve, in approximate sequence, fire-making, wood and stone use, agriculture and husbandry, metal use, fossil fuel use and the industrial consequents, electronics and its end-effect of artificial intelligence, genetics and psychology and then interstellar space flight, if the civilization is up to it.

Each of these stages might take different amounts of time to come to full blooming. It might be possible to understand them all separately, using the same model of asymptotic understanding. Early learning is relatively faster than late learning. This means that the middle portion of alienology, after the planet-building and origination and evolution of life and before interstellar travel, where civilization develops, has some principles that can be used to gain insights. This is one of the fundamental bases of this blog.

Wednesday, February 5, 2020

Does the Drake Equation Make Sense? Part 2.


If life originates, and the planet where this happens continues to reside in the liquid water zone, does it evolve to intelligent life? Are there certain conditions which are prerequisites for intelligence to evolve? Would they be common among such planets, or rare?

In this blog, and certainly elsewhere, it is supposed that tool use, starting with fire, then stone and wood, leads to the increasing capacity of the brain of some dominant organism. An equation, similar in form to the Drake equation can be written for this process, involving the evolution of increasingly complex organisms, starting from the first thing to form which constitutes life, a membrane enclosing some proteins that reproduce in some way, and which also produce more membrane. The steps might include the formation of more complex cells, with different features, the ability to exist in different environments and to consume different chemical energy sources. Then the shift to multicellular organisms has to happen, and many steps of evolution might be inserted into the new formula for the progressive development of capabilities of multicellular organisms. Then, back to single celled organisms, a step has to exist to be able to take energy from photons from the star, with the development of some primitive form of chlorophyll. And it goes on and on, as evolution is a horrendously complicated sequence. Regrettably, we do not understand the sequence completely, not even the conditions on the surface of the planet which are required to allow them to happen. The overall probability of producing intelligent species might be 1.0, meaning inevitable, or 0.000001, meaning intelligence is not a particularly useful capability for most creatures on an exo-planet.

The rise to intelligence is perhaps the most difficult of the probabilities in the Drake equation to estimate, as the evidence of most forms of life does not last for billions of years, with only a few exceptions. It should be one of the first orders of those who study it to come up with the new sets of probabilities, so that these can be studied from a normative sense, and then the whole combined into the Drake factor measuring it.

From intelligence to a civilization, mastering technology up to electronics, is another opportunity for sub-probabilities to be estimated. Here it is much easier, as there is history of our development, and it serves as one example, and a base upon which tangents may be followed. This blog includes, in many of the posts, speculation on the steps involved. There seems to be a natural order by which technology progresses, one stage depending on the previous, and there also seems to be a drive, reminiscent of evolution, which pushes creatures to develop successive stages of technology. Figuring out the steps up to the stage of civilization that we currently inhabit is not so difficult, but the postulation of what happens next is extremely controversial. There seems to be a tendency among modern-day humans to forecast dooms that might be imminent, and if one such doom really exists and is universal among intelligent species, reaching broadcast capability might be chancy, and staying there more chancy.

Another of the assumptions inherent in the Drake equation is that broadcasting is the end point of technology, and it would continue for some long period. It hasn't. There is still some, but the term, L, in the Drake formula may be very short as better ways of shipping large quantities of information around the planet have been found and have displaced broadcasting. This seems likely to continue, so L may be, for us, less than a hundred years. With that short a time, being so lucky as to be listening during the particular century out of billions of years of planetary existence is almost impossible to expect.

The Drake equation, if used with the retrospection of all the decades that have passed since it was first written down, may well indicate that the SETI project is hopeless and should never have been attempted. Many people's lives and careers were involved in it, and certainly some, perhaps many, were overwhelmed by the feelings that if they were successful, their fame would be writ large on the pages of scientific history. Some of the participants talked about the success of the project being a grand changer of the direction of human civilization. With such a result, it is not hard to see how the Drake equation was mis-evaluated in many ways so as to provide a justification for the search. Who wants to have their hopes of a glorious legacy be dashed?

The Drake equation, and indeed the SETI project, did have the value of focussing the attention of many individuals, scientist and non-scientists, on the various steps in the formula. It raises the interest level and provides some motivation for doing the hard scientific work necessary for our continued progress. There is little work going on in some very important areas, such as questions of the origination of life, but there might be even less if the burst of energy and excitement that the SETI project ignited had not happened. Understanding evolution is a continuing scientific task, and it might not have been greatly affected by SETI's popularity, but perhaps as the gaps and uncertainties in Drake's formula become more clear, there will be some effect, and some new Darwins will enter the field and erase the dark gaps in the theory.

Mankind has always tried to understand history, and the nature of man and the nature of civilization, but the Drake equation takes all this non-scientific palaver and demands that it be turned into a quantitative measure of how civilization develops. Historians typically do not make much use of the theory of technological determinism, which says that civilization is forced to adapt to technology, which is forced to follow a certain pattern of temporal stages. If history becomes scientific, this might be the result of the Drake and SETI activity with the greatest influence on the future of humanity. Once history becomes more scientific, a better forecast of the potential futures can be given and we would not have to resort to choosing between a dozen different predictions of dooms.

To summarize, the Drake equation inspires work in the following areas: orbital stability for small rocky planets, origin of life from either a unique event or ordinary conditions, the evolution of life through the millions of steps needed to lead to intelligent creatures, and the transformation of history from an art to a science. With the retrospective understanding we now have, the probability of success of the SETI project likely starts with many zeros, and there does not seem to be any redeeming factors in the equation which would raise it even to the order of a few percent or more. Given the amount of effort that was put into it, it was a good start, insofar as it provides motivation for more good science, and also makes non-scientists aware of the possibilities that we are not alone, and with a good amount of further work, we might know just how not alone we are.


Saturday, October 12, 2019

Affluence in Two Eras of an Alien Civilization

Recall, for reference, that the early history of an alien civilization is divided into eras based on technological change. Some creature on an origin planet evolves intelligence and manipulative skill, and begins to use objects as tools, such as rocks, sticks, fire, and possibly others. This makes the brain grow, and that species is on the road to having a civilization.

On Earth, this early era is called the Stone Age, but that may be because only stone has lasted for the long period of time since this era began. In this blog, eras are divided by what has been labeled grand transformations, as technology completely reworks the civilization and causes most aspects to adapt to it. Provided the planet has animals, the next phase would be hunting in packs or groups, which give rise to the need for communication, and language results, which also makes the brain grow. They would be developing tools for hunting, and for many other tasks as well. Clay or some other formable material might be used here. There is no mandatory ordering of tasks, as one does not depend on the other. Hunting weapons can be developed without having clay pots. This era might be called the Hunting Weapon Era, and much technology gets developed during this period, as the species has been getting smarter and smarter, and more options will be visualized.

After that, assuming climate is reasonably benign and evolution has been doing what it does in the plant kingdom, there would be an Agricultural Grand Transformation. This is where agricultural tools are developed, and the nomadic species, slowly and gradually, settles down so that some of them live in permanent settlements. These tools would be adapted to whatever plants and crops are first conquered by the species, and this might vary by location on the planet. Different areas should have quite different potential crops, as the alien species adapts wild crops to ones which can be reliably grown.

The next era occurs after another transformation happens, the Industrial. Sources of energy are tapped in this era, starting with wind and water if they are available on the planet, and biomass used with fire in a controlled sense. There would likely have been the use of fire for heating of dwellings and for metal working, and the next step is to use it for other purposes. If there are surface quantities of hydrocarbons, they might be used as well. The first engines might be developed to substitute for wind and water power in areas where they are not available and biomass is.

The Industrial Era gives way to the Electronics Era, which runs all the way from the first development of electical communication up through robotics and automation. It depends on the energy sources of the Industrial Era and must therefore come later. Following that the Genetic Grand Transformaion happens, which must also be even later, as it depends on a large amount of computational power being available.

Affluence can be a corrosive influence during these two intermediate eras, the industrial and the electronics, but the bad effects happen in two different ways. It is generated as technology ramps up productivity, and there soon appear many goods, starting with agricultural ones, but soon moving into a panoply of goods satisfying other needs of the members of the civilization. Since any society in a primitive agricultural situation is worried about population growth outrunning agricultural production, with an additional concern possibly arising because of weather or climate changes, the motivation to continue to work in an affluent period would be diminished. If that reduction spreads to the groups which develop technology, the growth rate slows and it might even stop. This represents a potential halt to this civilization's advance to space-faring.

During the electronics era, a second aspect of affluence might set in. Prior to the Genetics Grand Transformation, there might be no ability within the society to improve the genetic mix. This result has been titled idiocracy, and refers to a differential reduction in the per capita intelligence in the civilization. Again, this would permeate all parts of society, including that sector which produces genetic advances. If it stops for this reason, or for a combination of this and the previous reason, technology never reaches the starship level.

How could an advanced alien civilization not notice that this was happening, and do something about it? One possibility is there are no measures in the civilization to measure motivation or average intelligence. This needs to be combined with the gradualness of these changes. The civilization would have no alarm bells going off, only a slight sense that things were deteriorating. And there are so many other things that happen in a society under rapid technological change, that these effects might escape notice completely.

Another possible answer to this is to ask if life in an alien civilization in these two eras will be calm and coordinated or chaotic and divisive? Calmness would come when basic societal questions have been answered, such as what political and economic arrangements should be in place, what goals the civilization should adopt, how should children be educated, and more. At least in the early part of these two eras, what might be called the social aspect of the grand transformation sequence will not have been worked out. There will be a period during economics, politics, education, and psychology become real sciences, with proper definitions, theories, and deductions. But that period may be delayed for various reasons, such as factionalism based on location, background, profession or other divisions. They will also be delayed until what might be called the neurological revolution takes place, and provides the society with a complete explanation of how the brain works. Thus, these two eras may be so disruptive, in the area of social arrangements, that there is no chance that the two ill effects of affluence are even noticed and certainly paid the proper attention.

One way to summarize this is to say that the side effects of affluence, which is the successful application of technology to the problems of the alien civilization such as the provision of food, shelter and other necessities, overwhelm it and cause the rate of progress in technology to gradually slide lower and lower, and the progress itself becomes more and more inconsequential in the innovations it comes up with. This means that the alien civilization will never get to star travel, and never get to visiting Earth.

Friday, March 15, 2019

Momentum and Goals in an Advanced Alien Civilization


In this blog, the various eras of an alien civilization are described by the technology that is possessed. There is the early fire and stone era, then comes the age of metal, followed by the age of mechanical industry, followed by the age of electronics, then the age of genetics. It was convenient to divide these eras up by naming transition periods, 'grand transformations', when the knowledge and capability in one of these areas of technology was changing fast and leading the civilization into new directions and plateaus. All of the areas of technology continue changing at once, so there is necessarily overlapping of inventions in different fields, but the effect on society would seem to have peaks and valleys. In the peak, society is reorganizing itself to take advantage of the new technology. In the valleys, the reorganization is diffusing out but the main changes have passed in the part of the civilization that is at the forefront of technology change.

There are several possible catastrophes that could end an alien civilization and prevent it from ever traveling in space to visit Earth. Most of these are physical, such as a nearby supernova or a basalt flood or an asteroid impact. Some are social, such as idiocracy, which is the failure of the society to generate enough intelligent people to keep it running, or factionalism, where the civilization devotes itself to strife between factions, which again prevents it from pursuing higher technology or maintaining what has been achieved. A third one is resource exhaustion, where the cost of obtaining mineral or energy resources gets too high to maintain the standard of living necessary to keep technology going forward, and incidentally doing anything sufficient to prevent resource exhaustion. As noted in the posts on idiocracy, this happens when the culture ceases to value reproduction of intelligence, on the average, and might best be referred to as a situation of social momentum.

One way to think of social momentum is to think of a herd of herbivores outrunning some predators. They have no plan to follow, just speed to use to their advantage. So they run without thinking, most times to a successful escape, but sometimes into a cul-de-sac or over a cliff. The essence of social momentum is that the civilization has not reached the point where the goals of the civilization as a whole are discussed and clarified, but instead, they have not crystallized into any usable form. Goals are all personal and do not align. During a special period like a war, there will be a goal of at least a faction of the civilization, but other times, none exists.

For idiocracy, the social momentum is in the direction of differential breeding, with lower intelligence individuals breeding at a higher rate. For factionalism, there is a goal for each different faction, but they are opposite and pertain to the destruction of the other faction or factions. The social momentum is toward destruction of assets. For resource exhaustion, the social momentum is in the direction of individual consumption, and resources are not thought of as being needed for the successive generations, but only for the current one; otherwise they are thought of as being so huge that infinite is a good approximation in economic thinking.

Where does social momentum, in self-annihilating directions, arise? The nature of individual decision-making, in overview, is quite simple. Individuals make decisions for themselves or they copy the decisions made by others, which they obtain through individual contact or via media. Those controlling the media can filter such decisions, leading to a limited scope of choices for those individuals who prefer to copy the selections of others. Some number of individuals will make their own choices, depending on their feelings or using some amount of reasoning. If those who control the media make their choices in such as way as to have them fulfilled by spreading some particular set of goals, then the direction of the social momentum of society is determined by them. If in a particular alien civilization, there are divisions in choice among the media-controlling elements, then social goals will be diffuse, otherwise they might be more aligned.

Some economic systems have strong feedback loops which tend to concentrate wealth and power in the hands of a few individuals. Other systems might not have these loops. So one question to ask is, if factionalism is part of the social momentum of a particular alien civilization, will the economic system present on the planet allow power, in particular media control, to be concentrated. Technology might also push toward concentration, or rather, work via economics to do this.

Does technology and its understandable stages and steps tend to have economic changes along with the other social changes that it brings, and do those economic changes favor economic systems which concentrate power? One aspect of technology is a kind of communication range that individuals have. In the fire and stone era, there were only a small number of others who could communicate with any particular individual, maybe only one or a few families. In the metal era, there was surplus food at times, which allowed individuals to be used as travelers bearing communications. In the industrial era, communications begins to open up so that an individual might be in contact with thousands, via printing. Then electronics opens the gate even further, perhaps to the maximum possible, where any individual on an alien planet could without great difficulty communicate with any other one.

Is concentration of power also a social momentum artefact, so that if there at one time a high degree of it, does that continue for a long period, through technology changes? The feedback loop which promotes this might be the default condition of the civilization, and only by some unusual circumstances would there be a smaller concentration. The feedback loop works very simply. Someone with a large amount of power can use some of that to increase the amount of power he possesses, leading to a greater concentration. In the later stages of technology, transportation and communication are no longer hindrances to such concentration. So, the three social catastrophes, idiocracy, factionalism, and resource exhaustion might well be in the cards for many alien civilizations, as they will allow power to be concentrated to the point where the feedback loop begins to function, leaving the concentration to increase inevitably. The three catastrophes are not sudden, but very gradual, and the concentration of power effects will continue to push towards their final state, while power continues to concentrate even more.