Showing posts with label gene editing. Show all posts
Showing posts with label gene editing. Show all posts

Sunday, May 3, 2020

Recovery from Epidemics in Alien Civilizations

If an epidemic sweeps through an alien civilization, reaching all corners of the planet, and is lethal to some percentage of the population, the main drivers of the civilization's progress are not affected. Population count is not a direct cause of technology progress, and it will continue after some delay caused by the epidemic. What is important to maintaining the progress is having a quorum of intelligent, problem-solving individuals who can organize their work to push the envelope of science forward, and then to apply it to the productive activities of the population. If there is some fraction of deaths, maybe even as high as 90%, this does not mean that the genetic resources that are needed to produce the future generations of scientists and engineers are lost, it means the numbers are reduced and progress will be slowed down, or even degraded for a period of time. But it does not mean a permanent halt, and the timeline for this society to be able to make star travel work might be delayed for a few generations. 

To kill off the civilization as far as permanently eliminating their future progress, there would have to be a lethality level near to 100%, enough to eliminate so many of the population that there was a genetic reduction in intelligence. Is such a lethality level possible? Something lower than that might render the civilization incapable of maintaining its living standards, or even to preserve the existing level of technological know-how, but physical records and memories passed on to young aliens would lead them back to the standards they once had, and allow a resumption of the progress toward star travel.

Can an epidemic kill 100% of a population? This means that the contagion spreads world-wide, and that takes time, during which awareness of what is happening would travel all over the planet. Some response would be made, and the figure would drop below 100%. In the industrial era, when epidemics are possible because there is world-wide transportation and not yet rapid genetic developments of antidotes and antigens, there are still recourses to reduce the impact of the epidemic. Furthermore, with a wide mix of genetics for the immune systems, optimality having not yet been accomplished or even understood, there might be some aliens who are naturally immune, constituting some fraction of the population. And there might also be some individuals who are mostly resistant to the infectious organism's effects, recoving from it in more or less unimpaired condition. So, the achievement of 100% or very close to it lethality is unreasonable to suppose.

Before assuring ourselves of the recovery capability of a generic alien civilization, we might ask if there are any circumstances in which such a recovery might not happen. Regrowth needs resources, and if the civilization has already harvested the easy to gather ones, the minerals near the surface for example, could there be a barrier set up so that the civilization is bound down to a lower level of technology, one not capable of difficult extraction situations for critical items? Technological progess and resource development go hand in hand, and if the latter is impaired by what happened before the epidemic, could there be a strong barrier, sufficient so that the civilization would remain at some level, industrial or agricultural, forever? 

This is a question related to the particular planet upon which the civilization resides. Does the planet have large, relative to the usage rate of the population, amounts of most necessary minerals and energy resources? Or is the planet, owing to where it developed and the history of supernova generation of heavier elements in the clouds nearby, rather short of resources? If the latter instance, could the near exhaustion of resources in the industrial era could leave the surviving civilization with only too-hard-to-obtain resources remaining? This means that, during this alien civilization's industrial era, no one noticed, or if it was noticed, no one responded to the problem, and the resources available to the civilization were rapidly diminishing and growing harder to locate and recover, and instead of the obvious solution toward reducing usage with a world-wide reuse plan, they simply continued to work toward an early resource exhaustion. 

This does not make sense to rational people, but could there be some economic system which drove resource exhaustion heedlessly and recklessly. Could such an economic system stay in place when the costs of resources mounted steadily and significantly? This is an excellent question about the unbreakability of some economic systems. Can they be so firmly embedded in the culture that they would be blindly followed to near-term self-destruction of the civilization? Economic systems are in place because those who have the power to determine the ones to be used benefit from them, and so this question is, could these leaders of an alien civilization be only concerned with their own short-term benefits, and dismissive of what will happen to the civilization as a whole in only a few generations? 

This question takes us further afield. Recall that the science of training children, which involves setting goals for them in the deep subconscious, may be completely unknown to the civilization, and child-training and goal-setting left to random choices by those responsible for that training. Thus, short-sighted goals might be preserved, generation to generation, including the goals that those who become leaders have. This particular realm of science is likely only able to arise in the later part of the industrial era, that of electonics and automation, or even in the early part of the genetics era. 

There may be other mechanisms by which an epidemic could put an end to the future of an alien civilization, barring them from space travel, but this is one. It would only occur on a planet with less abundant resources, measured by how long they last during the industrial era, and only in situations where the neurology and training area of science happens to blossom late in this era. In this particular and possibly rare situation, a world-wide epidemic could have indirect effects that could collapse the civilization unrecoverably. But not only would these two requirements have to be in place, the epidemic itself would have to be at the limits of lethality, via both the disease effects and contagion. It might be that the evolution of such an infectious organism is extremely unlikely, and only by some early efforts at genetic engineering, at the level that would be possible in the later industrial era, could it arise and be, possibly accidentally, released.


Monday, January 27, 2020

Chromosome Genetics

Knowledge abounds here on Earth about the number of chromosomes humans have and how gender is determined by whether a fertilized egg cell has an XY or XX chromosome pair. It's less well known that cell division includes the opening up of all nuclear DNA pairs and the splitting of them into two batches before replication. Even less well known is how hard it is, given today's technology, to separate chromosomes so they can be accessed individually.

It is not exactly clear if there is any other way of harnessing the protein synthesis control capabilities of DNA so that alien cells might have a different way of doing it. Nor even is it known if there are alternatives to DNA to carry genetic information. Genetics in this area is like exo-planetary studies before any exo-planets were discovered. Everything is speculation.

These two questions are somewhat independent. If an alien planet had non-DNA genomes, that still does not mean that they would not have all the genetic information divided up into chromosomes. The alternatives are to have more than one nucleus in the cell, with perhaps one chromosome in each, or to have one nucleus with only one chromosome pair having all the DNA or its equivalent. Why did Earth evolve multiple chromosomes, or rather, why don't all species have just one large circular chromosome as do many single-celled organisms? What is the evolutionary advantage and would it be universal, meaning on other planets as well?

Among contemporary bacteria, there are some with one, two or more circular chromosomes, some with linear chromosomes, and some with a combination. After billions of years of evolution, the competition for a chromosomal shape has not been won by any arrangement, so for bacteria and other prokaryotes at least, there must be little evolutionary advantage between them. This is not true for eukaryotes, multi-cellular organisms, which all seem to have linear chromosomes. Most eukaryotes also have some legacy circular chromosome material, located in the mitochondria or elsewhere, which reproduce independently of the nuclear DNA during cell division.

One advantage is obvious. To have genetic information for many different types of cells, as well as the signaling information for organizing them, there must be much more information, and a circular chromosome or a single linear chromosome with all this information would simply be too large to fit into the nucleus, or for the meiotic proteins to handle. Having everything in large numbers of diverse mitochondria also seems evolutionarily difficult, for the organization of cell replication. So, using DNA or anything else, it appears likely that alien species will have multiple linear chromosomes.

Alien geneticists may run into the same problem that Earth geneticists have: separating chromosomes is difficult. The processes within the cell are quite complex, and there is not enough information on them to allow them to be replicated or imitated in a genetics lab. Neither have there been any simple mechanical solutions to separating chromosomes. Perhaps we are missing the right discovery. By the time asymptotic technology arrives in the genetics area, however, this problem will have been solved.

It's not clear that the ordering of advances and inventions in the genetics grand transformation will make much difference in how an alien civilization will develop. The end result would be the same. But chromosome separation would allow some cost-savings in making genetic changes to organisms, or to the creation of synthetic organisms. If this cost-savings is large, it would emphasize the possibility of having genetically modified or created organisms throughout the civilization.

All we can do now is map the genome of humans and other organisms, and use that information for diagnoses, or in plant and animal breeding. There is some work being done on inserting novel genes into existing plant and animal genomes, but it is very slow. If it were possible to isolate chromosomes rapidly and inexpensively, this would speed up the process. It would also make the process of genetic modification more certain, as a laboratory could simply work with one chromosome and modify it, without having to worry if the modification methodology would accidentally make a modification in another chromosome, with a similar stretch of DNA.

One interesting question to ask is how would an advanced alien society prepare the genetics of their successive generations of their population. Suppose there is an inexpensive way to separate chromosomes. Then, the alien society could simply decide to choose the best set of chromosomes from the copies available. If there is some optimal set, then all the aliens in later generations would be like clones. Alternatively, if the selection was out of the set of a pair of parents (assuming two genders), a wide variety of individuals would remain, but there would be a trend toward more healthy individuals with better capabilities.

Similarly, if there were pairs of parents with some genetic deficiency in one chromosome, specifically in one of the parents, then that chromosome could be eliminated in the resulting next-generation individual. This would result in the gradual elimination of genetic diseases and other problems, although errors in replication remain possible and there would always be a risk of some new mutation arising.

There are many syndromes which arise because of the improper copying of whole chromosomes, meaning extra copies, and with chromosome separation technology, these would be reduced or eliminated as well. Broken chromosomes could be sorted out as well, and mutations arising from copying errors would be detectable and removable. Reading the genome would be less computationally intensive and less prone to mistakes, if each chromosome was read individually. The current Earth method of batching all the chromosomes together and then sorting them out after all the fragments have been read is clearly something that can be improved on.

The technology to separate chromosomes does not seem to be on the horizon, meaning the old methods would be used here for a decade or so. Microbiological investigation into how to make a cell nucleus separate and then how to create microtubules to reach into the mixture and connect to individual chromosomes needs to be done. Once it is well understood how nature accomplishes this task, it would be more reasonable to expect that genetics laboratories can come up with some combination of biological and physical equipment to accomplish chromosome separation. After this, we might see genetics jump forward very fast in potential applications, and this will give us a much clearer idea of what an advanced alien society might be doing with their own technology in this area.

Thursday, March 7, 2019

Later Stages of the Genetic Grand Transformation


In an older post, it was noted that the genetic revolution is likely to be, by a large margin, the most revolutionary of all, in the sense that an alien civilization will be wholly transformed when it happens. The different stages of this grand transformation can be laid out, as they are necessarily sequential. The knowledge gained at one stage is needed for the next stage.

The first stage is very simple, chromosomal selection for embryos. This is extremely old news here on Earth, and there has even been a movie produced about it, entitled GATTACA, from twenty years ago. A couple has twice as many of each chromosome as an embryo needs, so the best two of each type can be chosen. The second stage is what we hear in the news nowadays, which is when specific genes are chosen. Tools for that are just now being found here, and surely in any alien civilization reaching its maturity this would be as routine as antibiotics. Small amounts of changes are what we talk about now, as we don’t have confirmed technology for even that. The technology must exist, however, as inside the cell, genes are moved around during evolution all the time.

Right after that, industrial gestation would be the likely mechanism to be developed next. This particular invention will change an alien civilization more than the Internet has changed out, which is totally. No more parents and no more child-bearing, just new humans. Will parenting become a specialized business, just as has almost every other aspect of life? Why would it be any different? Parenting is extremely rewarding, perhaps more so than any other activity in life, but why not outsource the child-bearing to a machine? Yes, bonding between mother and child will be diminished, and in time, as an alien civilization ages, the role of mother might be also performed by specialists, either trained aliens or some robotics. It is almost trivial to be able to think up problems that might happen with this, but it will be just as trivial for an alien civilization to figure out how to avoid them or turn them into advantages.

Consider for a moment what this point represents. It means that any organism that can be developed in a laboratory can be put through industrial gestation and be ‘born’. This refers to things on alien planets like mammals, but similar processes would be similarly possible for things like plants and insects and whatever else evolved on the planet. In other words, life becomes something like a recipe or a cookbook. AI will undoubtedly be very powerful by the time industrial gestation is well-developed, so the concoction of forms of life which can successfully pass from the egg stage to the real world and on to an adult animal or plant will be quite possible. A huge amount of data will have to be collected, about all the molecules that operate in a living organism, but huge data stores are just the media AI likes to live in.

Now, on Earth, to come up with a new species of plant or animal takes a lot of careful breeding and selection. On a planet with technology a few centuries past ours, it will be done from scratch, without experimentation, as ontology and growth can just be simulated. There can be as many new species as anyone wants to take the time and expense to come up with.

This is by no means the end of the genetic grand transformation. Since reproduction of anything will be economically done industrially, why would there be any species at all? Species are defined as groups of individuals capable of breeding with one another. There would be no need for this, so why have species? There could be a billion clones of some plant if it were desired, or none, meaning that organism was its own species.

Is DNA sacred, or whatever form of organic molecule evolved on an alien planet to serve as the template for genetics? We on Earth are far from knowing how many kinds of molecules can do this job, and if there are more than one, is there another which is more versatile, or more reliable, or easier to work with, or anything else which might mean that the alien technologists would start switching over to it for successive generations of organisms?

And whether DNA or XYZ is used, the legacy method of ontology might be changed. We don’t understand this process very well, but we have observed it in detail. The idea is that each successively evolved species keeps most of the ontology of its predecessor, and adds a little twist to it. Perhaps an alien civilization would rewrite the book, and have a completely different order of development of organs in some new organism they created. Just because something evolved does not mean it was the best that could exist, as there is a barrier posed by the need for evolutionary change to work gradually.

One point made in that earlier post is by the time of these later stages of the genetic grand transformation, it might be reasonable for aliens to switch over from mono-genetic organisms to multi-genetic organisms. We refer to these as chimeras, but that is only a tiny little glimpse of what might be possible. Any optimized genetic package can be used for any organ or part of an organ in a designed chimera. Aliens could choose to use just two or as many as desired. This would mean that an embryo would be fashioned by amalgamating cells of different genetic varieties, all of which were tuned so they could form a cooperative package of cells that could be gestated and have different genetic codes in different parts of the organism.

All the previous stages involve organic biochemistry. At some point, there could be a closer bond between organic and inorganic components in some hybrid object. We on Earth use certain types of microbes to sort out dilute liquids containing minerals, and of course that should be expected to expand far beyond these ideas. For example, technology may well allow communication between whatever passes for neurons on an alien planet, and some semiconductor gizmos of equally small size. The neurons would be tailored genetically for this, and the gizmos specifically designed and printed to be a good substrate. Then anything is possible.

Authors and screenwriters like to play with the idea of a person from some centuries ago being brought into the modern world and being astounded by what they see. Someone from before the genetic grand transformation being brought to a time after it would be immeasurably more confounded by what is seen. We on Earth would do well to simply contemplate these potential changes to better appreciate what an alien civilization of advanced technology really looks like. Then we can better ask the question of why haven’t they visited us here.